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MCMC - Gibbs Sampling

- Initialization
Fix evidence nodes to observed values e, €.
Initialize non-evidence nodes to random values.

- Repeat N times
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|By).
Resample x ~ P(X|Bx).
Take a snapshot of all the nodes in the BN.

- Estimate
Count the snapshots N(g,q’) < N with Q=g and Q'=q'".

N(q,q’)

P(Q=q,Q'=q'|E=¢,F'=¢') ~ N
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Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes
of the BN.

2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence
nodes.

3. Theoretical guarantees for mixing time, in practice we use
burn in time.

4. The estimates from MCMC converge in the limit:

/
||m N(Q7Q) N P(QZC],Q’ZCHEZ@,E’ZQ’)
N—oo N
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MCMC versus likelihood weighting (LW)

- How they sample

P(X|pa(X))

MCMC P(X|Bx)

} samples non-evidence nodes from {
- Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|Bx) before each sample.

- Convergence

L\W is slow for rare evidence in leaf nodes.
MCMC can be much faster in this situation.
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Learning in BNs

- Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.
But not always — especially not in very complex domains.

- What is the alternative?

With sufficient data, we can estimate useful models.
This is the central idea of machine learning.

- What are some applications?

Language modeling
Visual object recognition
Recommender systems
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Maximum likelihood (ML) estimation

- Here'’s a simple idea:

Model data by the BN that assigns it the highest
probability.
In other words, choose the DAG and CPTs to maximize

P(observed data | DAG & CPTs).

This probability is known as the likelihood.

- But is this too simple?

The data may be unrepresentative or too limited.
This is one failure mode of ML estimation.
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Learning with complete data and tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xn}.

2. The data consists of T complete (or fully observed)
instantiations of all the nodes in the BN.

3. CPTs enumerate P(X;=x|pa(X;) = ) as lookup tables;
each must be estimated for all values of x and .
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- Fixed DAG over discrete random variables

X, € {1,2,3}
X, € {1,2,3,4}

@ @ X3 € {1,2,3,4,5}

- Data set
example | x1 | X2 | X3
1 1145 Note that if T is
2 3214 :
= s sufficiently large,

some rows are
destined to repeat.

T 1 3 2

.
We can also denote the data set as {(xﬁt),xgt),xg))} .
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- Fixed DAG over discrete random variables

® ®

- Data set

example

X

X2

X3

1

2

3

X, € {1,2,3}
X, € {1,2,3,4}
Xs € {1,2,3,4,5}

How to choose the

CPTs so that the BN
maximizes the probability
of this data set?
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
stributed (11D) from the joint distribution of the BN.

- Probability of I1ID data

P(data) HP(X1 =x{ x,=xP .. szﬁ”)

- Probability of t*" example

P(xW - ,xz_x;%...,xn:xﬁ))

TP (o bttt

HP(X,—X ‘an, pa ) ’condltlonallndependence‘
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Computing the log-likelihood

L = logP(data)

= IogHP<X1t)7X§t,..., SP)

— IogH H P (X,(t) ‘paft)) ’ product rule & Cl ‘

t=1 =1

T n
_ ZZIogP<X,§t)‘pa’(t)) [log pg = log p + log q|

t=1 =1

n T
= > > logP (x,m ‘paft)> |sums can be reordered |

=1 t=1

sum over examples
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

XX | X3 count(X1=1) = 3

(x) 145
I3 % count(X;=2) = 2
21113 count(X;=3) = 1
@ @ 2 114 count(X, =1,X%=2) = 2

1] 3 5
113 5 count(X, =3,%1=1) = 2
count(Xz=5,X1=1) = 2

Note: these counts can be compiled in one pass through the data set.

15/ 44



Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.

£ = 3 e (o)
t=1

=1t

n
= ZZZCOUHt(X,‘:X,pa,':ﬂ') log P(X; =x|pa; =)
=1 x 7

[ These two expressions compute the exact same sum! ]

But the latter has a much more appealing form ...
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Interpreting the log-likelihood

constants of the data

ZZZ count(Xj=x, pa;=m) log P(Xi=xX|pa;=m)

CPTs to optimize

- The log-likelihood for complete data is a triple sum over

I — thenodesin the BN
x — thevalues of each node X;
m — thevalues « of the parents of X;

- How to optimize?

Intuitively, the larger the count(X;=x, pa; =),
the larger we should choose P(X;=x|pa;=m).
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X

- Contribution from row = of it" node’s CPT

Li, = Zcount(X,-:X,pa,-:w) log P(Xj=X|pa;=m)

X
- Divide and conquer

The overall optimization over £ reduces to many simpler
and smaller optimizations over each Lj,.

This is a special property of ML estimation for complete data.
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ML Estimation

+ Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(Xj=X|pa;=m)

X
subject to two constraints:

1. >, P(Xi=x|paj=m)=1  (normalized)
2. P(Xi=X|paj=m) >0 (nonnegative)

- Shorthand

Co = count(Xj=a,pa;=m)
Pa = PXi=alpa;=m)
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Lix = Zcount(X,-:X./ pa;=m) log P(X;=x|pa;=m)

X
subject to two constraints:

1. Y, P(Xi=x|paj=m) =1 (normalized)

2. P(Xj=x|paj=m) >0 (nonnegative)
- Shorthand
How to maximize
Co = count(Xj=a,pa;=m) . > Calogp, such
Pa = PXi=alpa;=m) that >~ p, =1

and p, > 0?
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Maximizing the likelihood

- Compute the normalized counts:

Define g, = ZC;CB sothaty ga=1.

Note that g, is itself a distribution.

- All these problems have the same solution:
Maximize > Cqlogp, suchthat 3  ps. =1 pa>0.
Minimize ", C,log p% suchthat > pa =1 pa > 0.
Minimize 3" C, log pC;T suchthat > pa =1, pa >0.

Minimize 3" q.log = suchthat 37 pa =1, pa > 0.
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Maximizing the likelihood

- Compute the normalized counts:

Ca _
Define g, = e sothat )’ go =1.
Note that g, is itself a distribution.

- All these problems have the same solution:
Maximize > Cqlogp, suchthat >  po =1 po > 0.
Minimize " C,log pi suchthat Y pa =1 pa > 0.
Minimize " C, log g—“ suchthat Y pa=1pa >0.

Minimize  » q.log =  suchthat 3, pa=71,pa>0.

\_v_/

KL(q,p) + | KL distance

’Solution: Do = qa‘
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ML solution from normalized counts

count(X;=x, pa;=m)

MG =XIpa =) = S (=, pay =)

- For nodes with parents:

count(X; =X, pa; =)

Prr.(Xi=x|pa; =) = count(pa; =)
=

- For root nodes:

count(X;=x)

PuL(Xj=x) = T
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ML Example

Observed data:

=<
N

Q. Which of the following
is a parameter we would
like to estimate?

A. P(X=1)

B. P(Y=1)

C. P(X=11Y=1)
D

. More than one of
these

X,Yand Z
are Boolean
variables

E. None of these

R|lO|CO|O|RP|O|P|P|O|O|OC|O|X
O|lRr|(P|IP ORP|OCO|OC|C|R,|O|Fr

O|rP|O|P|O|P|O|O(R|[RP|RL|O
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ML Example

Observed data:

=<
N

Q. Not including comple-
ments (eg. P(X=1) and
P(X=0)), how many differ-
ent parameters are there
to estimate?

3
4
5
7
More than 7

X,Yand Z
are Boolean
variables

R|lO|CO|O|RP|O|P|P|O|O|OC|O|X
O|RPr|O|Pr|O|RP|O|O|RP|RP|P]|O
O|lRr|(P|IP ORP|OCO|OC|C|R,|O|Fr

m O 0O ® >
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ML Example

Observed data:

X|Y|z

olo|1 . )
B Q. What is the ML esti-
NEE mate for P(Z=1|X=0, Y=0)?
oj1]0

X, YandZ 110|0 A 0O

are Boolean 1100

variables B. 1/6
o112
1/0]0 C.1/2
0|11 D 1
olo|1
ol1l1 E. None of the above
1|00
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ML Example

X,Yand Z
are Boolean
variables

Observed data:

=<

N

R|lO|CO|O|RP|O|P|P|O|O|OC|O|X

O|rP|O|P|O|P|O|O(R|[RP|RL|O

O|lRPr|IP|IPIO|POC|IO(C(RP|O|F

Q. Which parameter has

an

undefined ML esti-

mate?

A.

!"".UO.UU

P(X=1)

P(Y=1|X=0)
P(Z=1IX=0, Y=0)
P(Z=1]X=1, Y=1)

More than one of
the above
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0

- But problematic for sparse data:

count(X;=x,pa; =7
PuL(Xj=X|pa;=m) = (' =)

count(pa; =)

This is undefined when count(pa;=m) = 0.
Otherwise it is zero when count(Xj=x, pa;=7) = 0.
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Markov models




Statistical language modeling

Let w, denote the ¢*" word in a sentence (or text).
How to model P(wq, ws, ..., w)?

L CHAPTER I

What can | help
you with?

automatic speech recognition machine translation
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Context and expectations in language

“It's hard to wreck a nice beach”

“It's hard to recognize speech.”
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Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a
finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| Wy_(n—1y,- - -, We—1)

n—1 previous words

2. Position invariance

Predictions should not depend on where the context
occurs in the sentence or text:

P(We=wW|wWy_(n_y, .-, Wg_1)

= P(Werg=W|We g (nory=We_(n-1y,- > Wsie-1=Wp_1)
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Markov models

P(wq, wa, ... W)
e
4
= ] PWelwe—(iry, - -, W) ’conditionalindependence

J4
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Markov models

] Models of different orders \

) (o) ()~ () )
()—(—() ~ (=)

O, O
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

PrL(We=w'|we_q=w) = count(w —»w') _ count(w — w')
MLAWe= (=0 = count(w — x) >, count(w — w”)
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Problems with ML estimates

1. No generalization to unseen n-grams:

ML estimates assign zero probability to n-grams that
do not appear in the training corpus.

2. The larger n, the worse the problem:

n-gram counts become increasingly sparse as n increases.
Many possible (but improbable) n-grams are not observed.

You will explore this problem further in HW 4.
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Naive Bayes models




Document classification

sports

- Setup

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.
- Random variables

Let Y€ {1,2,...,m} denote the label.
Let X; € {0, 1} denote whether the i*h word appears.

This representation maps
each document to a sparse
binary vector of fixed length.

— [01100...010]
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Belief network

& &

This DAG makes a fairly drastic assumption of conditional
independence:

n

PO, ..., XalY) = T PCXiIY)
=1

For this reason it is called a Naive Bayes model.
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

- Collect a large corpus of documents.
- Label each document by a topic.

- Estimate the CPTs by maximizing the likelihood.
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ML estimation

& &

Pun(Y=Y) fraction of documents with
label y in the corpus
Py (Xj=1]Y=y) = fraction of documents with

label y that contain the jth
word in the vocabulary

’ Once the model is learned, what is it good for?
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Inference

How to classify
an unlabeled
document? ® ® - ®

P(Y:y‘X'MXZa o 7Xﬂ)

P(X1, Xa, ... X Y=Y) P(Y=Y)
B L
PO, X, - Xn)

— (YP(y)<)1,1_)[<2,._.(,XXnY) Y) ’conditionalindependence‘
P(Y=y) [T, P(Xi|Y=Y)
>y (Y—V)H_\ P(XilY=y')

] normalization \
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Strengths and weaknesses

Strengths @

- Easy to learn from data.

® [Fer]

- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence
- No information about word ordering

- Binarization of word counts

- Etc ...
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That's all folks!
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